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‡ Department of Physics and Applied Superconductivity Center, University of Wisconsin–
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Abstract. We introduce a new8-derivable approach for the Anderson impurity model in a
BCS superconductor. The regime of validity of this conserving theory extends well beyond that
of the Hartree–Fock approximation. This is the first generalization of theU -perturbation theory
to encompass a superconductor.

The Anderson impurity model [1] provides one of the most versatile field-theoretic
descriptions for interacting correlated electrons within condensed-matter physics [2]. The
Anderson Hamiltonian in a normal metal is

HA = Hs +Hsd +Hd +HU (1)

whereHs =
∑

k,σ εkσ nkσ describes the electron gas,Hsd =
∑

k,σ (Vkc
†
kσ dσ + V ∗k d†σ ckσ ) is

the admixture interaction,Hd =
∑

σ Eσnσ represents the d-electron level andHU = Un↑n↓
denotes the Coulomb-repulsion interaction. This model describes the continuous transition
of a nonmagnetic resonant level (forU � 0, where0 = πN(0)〈|V |2〉) to a magnetic atom
(U � 0), and one can consider treating eitherV or U perturbatively. For0/U � 1, in
the magnetic Schrieffer–Wolff (SW) limit [3], the Anderson Hamiltonian reduces to the s–d
Hamiltonian, i.e. the Kondo model. This limit and the magnetic–nonmagnetic transition have
been successfully treated within the renormalization group (RNG) program [4]. However,
simpler controlled approaches would be highly desirable due to the wide applicability of
the Anderson model and its variants to many physical systems of interest.

Since its initial introduction to describe the nonmagnetic–magnetic transition of
impurities in otherwise nonmagnetic metals, and the associated many-body Kondo
phenomenology, the Anderson model has been extensively applied and generalized to
also describe interacting pairs of impurity atoms in metals (the Alexander–Anderson
model), valence fluctuations and heavy-fermion materials (the periodic Anderson model),
chemisorption (the Anderson–Newns model) and charging phenomena and the Coulomb
blockade in quantum dots and quantum-dot arrays. It is also of great inherent interest to
consider the Anderson model for a superconductor and the appropriate theoretical approaches
to this problem. In particular, the RNG approach has not been generalized to this case and the
Bethe-ansatz(BA) method fails to be suitable since the superconducting electronic spectrum
does not fulfil the requirement of a linear(εk ∝ k) dispersion relationship, necessary for
the applicability of thek-state enumeration within the BA scheme.
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Figure 1. The local d-electron propagator in the normal state,GN(ω), is here denoted as a line
with an arrowhead (l.h.s.). The local Coulomb-repulsion or Anderson–Hubbard-interaction term
Un↑n↓ is represented in the diagrams with a dashed line having two vertices (r.h.s.).

Figure 2. The terms8(2)N in the normal state up to the second order inU . The linear term inU is
the Hartree–Fock bubble. The second-order term inU contains two particle–hole (susceptibility)
bubbles, describing interacting localized spin fluctuations (LSF) at the impurity site.

Yosida and Yamada [5] first pointed out that in order to obtain the single-particle Green’s
function and the local density of impurity d states, it is useful to study the many-body
perturbation theory with respect toU . Thus one considers the Anderson Hamiltonian as

HA = H0
HF − U〈n↑〉〈n↓〉 +H′U (2)

whereH0
HF − U〈n↑〉〈n↓〉 is up to the constant energy shift,U〈n↑〉〈n↓〉, the unperturbed

Hartree–Fock (HF) Hamiltonian and

H′U = U δn↑ δn↓ = U(n↑ − 〈n↑〉)(n↓ − 〈n↓〉) (3)

is the Coulomb-repulsion term, treated as the perturbation; see figure 1. Yosida and Yamada,
in their original paper [5], used a complicated formalism utilizing Pfaffian determinants to
derive theU -perturbation theory; Yamada [6] first presented the numerically evaluated d-
electron spectral density function using theU2-self-energy in the low-temperature limit.
This approach may easily be generalized to arbitrary temperatures in normal metals [7], for
which one may introduce the d-electron impurity self-energy6N(ω) through

GN(ω) =
(
(GHF )

−1−6N(ω)
)−1

. (4)

Here the HF propagator is

GHF (ω) = −
(
ω − EHF − F(ω)

)−1
(5)

with F(ω) =∑k |Vk|2G0
k(ω) ≈ −i0 andG0

k(ω) = (ω − εk)−1. Above,EHF = U + 〈n〉 is
the Hartree–Fock energy. Here and in what follows we omit the spin indices for brevity;
hence our expressions are valid for zero field. Using the second-order free-energy functional
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8
(2)
N in figure 2, one easily finds that theU2-self-energy may be obtained by cutting the

d-electron propagator line in the diagram as

6N = δ8N/δGN. (6)

Consequently, the imaginary part of the second-order contribution (inU ) to the impurity
self-energy is given by

6′′N(ω) = U2
∫

dω1

π

∫
dω2

π

∫
dω3 δ(ω − ω1− ω2− ω3)F (ω1, ω2, ω3)G

′′
HF (ω1)

× G′′HF (ω2)G
′′
HF (ω3). (7)

HereF(ω1, ω2, ω3) abbreviates the following collection of thermal occupancy factors:

F(ω1, ω2, ω3) = [1− f (ω1)][1 − f (ω2)][1 − f (ω3)] + f (ω1)f (ω2)f (ω3) (8)

with f (ω) = (eω/T + 1)−1 denoting the Fermi distribution function.
Note that theU -perturbation theory can be derived from a free-energy functional,8.

Therefore, this is a ‘conserving approximation’ [8] for the many-body system, with positive
definite spectral functions and with sum rules fulfilled by construction. The linear term in
U—see figure 2—is the HF term, describing the motion of a d electron with spinσ in the
mean field produced by the d electron with spin−σ . This mean field, or the expectation
value 〈n〉, must be computed self-consistently. The quadratic term inU describes the
interaction, at the impurity site, of the localized spin fluctuations (LSF) represented by the
particle–hole spin-susceptibility bubbles(GNḠN).

Yamada [6] first showed that theU2-self-energy6(2)
N (ω) yields a triple-peaked structure

for the spectral density of the impurity atom. The sharp central peak forT = 0 obtains
the unitary limiting value atω = 0. This approach was later generalized to arbitrary finite
temperatures [7] and it was shown that the central zero-frequency peak has a sensitive
T -dependence.

The Anderson model in a superconductor is given by

HA,BCS = HBCS +Hsd +Hd +HU (9)

where the BCS Hamiltonian is

HBSC =
∑
k,σ

εkσ nkσ −
∑
k

(1c
†
k↑c
†
−k↓ +1∗c−k↓ck↑). (10)

This model has been discussed in the HF [9, 10] and Schrieffer–Wolff [11] limits. In the HF
approximation for a superconductor one truncates the Coulomb-interaction term as follows:

Un↑n↓ → U〈n↑〉n↓ + U〈n↓〉n↑ + U〈d†↑d†↓〉d↓d↑ + U〈d↓d↑〉d†↑d†↓. (11)

Here the anomalous average〈d↓d↑〉 induced at the impurity site presents another mean field,
in addition to〈n〉, which is to be computed self-consistently. The HF approximation to the
Anderson model in a superconductor [9] shares the same instability problem as the HF
approximation in the normal metal [1]: a spontaneous unphysical breaking of symmetry at
the impurity site. Our aim is to develop an approach which is free from this HF instability
and which enables one to go beyond the HF picture. In particular, we are interested in
investigating the qualitatively new physical features, especially in the d-electron density of
states, due to increasing electron correlations asU increases beyondπ0, where the HF
solution no longer provides quantitatively meaningful answers.

A generalization of theU -perturbation theory for the Anderson model in a
superconductor has thus far not been discussed in the literature. The purpose of this letter
is to suggest a new, conserving, self-energyU -perturbation expansion that is valid in a
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Figure 3. Elements of the localized 2× 2 Green’s-function matrix in the Nambu space for the
superconducting state are represented by lines with double arrows. HereG(ω), corresponding
to theGN(ω) in figure 1, is the electron propagator, whilēG(ω) is the time-reversed hole-
propagator function;F(ω) is the anomalous particle–hole Green’s function andF̄(ω) denotes
its conjugate.

superconductor. We note that the RNG approach has recently been generalized to treat
magnetic impurities in superconductors, but thus far only for the s–d model [12].

The matrix self-energy expansion in the Nambu space is introduced as

ĜS(ω) =
(
(ĜHF (ω))

−1− 6̂S(ω)
)−1

(12)

where the hat denotes matrices in the particle–hole Nambu space and the d-electron
propagator in the HF approximation is given as

ĜHF (ω) = −
(
ω − EHF − F11(ω) U〈dσ d−σ 〉 − F12(ω)

U〈d†−σ d†σ 〉 − F21(ω) ω + EHF − F22(ω)

)−1

(13)

which, for brevity, we denote here as

ĜHF (ω) =
(
G(ω) F(ω)
F̄(ω) Ḡ(ω)

)
. (14)

These propagators are illustrated graphically in figure 3 as lines with two arrows.
The energy-integrated Green’s function (or generalized density of states)F̂S(ω) in

equation (13) is

F̂S(ω) =
(
F11(ω) F12(ω)

F21(ω) F22(ω)

)
=
∑
k

V̂ ∗k Ĝ
0
k(ω)V̂k (15)

where

V̂k =
(
Vk 0
0 −V ∗k

)
. (16)

Above, in equation (15),Ĝ0
k(ω) is the unperturbed Green’s function for the bulk

superconductor:

Ĝ0
k(ω) =

(
ω − εk 1

1∗ ω + ε−k
)−1

. (17)

The self-energy in equation (12) is a matrix in the Nambu space:

6̂S(ω) =
(
611(ω) 612(ω)

621(ω) 622(ω)

)
(18)

which may be obtained as

6ij = δ8S/δ(GS)ij (19)

where8S now denotes the free energy in a superconductor.
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Figure 4. The generalization of8 to the second order inU for the pair-correlated state,8(2)S ,
expressed in terms of the superconducting propagators,G, Ḡ, F andF̄ , in figure 3. Due to the
anomalous propagators in the pair-correlated medium, there now occur two first-order Hartree–
Fock terms linear inU and three second-order terms inU , owing to the interacting localized
spin fluctuations (LSF), correlated localized spin and pairing fluctuations (LSPF) and interacting
localized pairing fluctuations (LPF), respectively.

The second-order free-energy term inU for a superconductor,8(2)
S , is illustrated in

figure 4 from which we obtain the following expression, accurate toU2:(
6′′11(ω) 6′′12(ω)

6′′21(ω) 6′′22(ω)

)
= U2

∫
dω1

π

∫
dω2

π

∫
dω3 δ(ω − ω1− ω2− ω3)F (ω1, ω2, ω3)

×
(
G ′′(ω1) −F ′′(ω1)

−F̄ ′′(ω1) Ḡ ′′(ω1)

)(
G ′′(ω2)Ḡ ′′(ω3)− F ′′(ω2)F̄ ′′(ω3)

)
(20)

whereF(ω1, ω2, ω3) is, again, given by equation (8). Note that the propagatorsG, Ḡ, F and
F̄ in the above expression may be evaluated in the HF approximation—see equation (13)—
which already contains the pairing interactionHBCS to infinite order in the unperturbed
HamiltonianH0. Therefore, theω-integrals in equation (20) are rather complicated: they
contain delta-function contributions from the bound states and also continuum contributions.
Trivially, one observes that the normal-state limit, equation (7), is obtained consistently from
equation (20) when1→ 0 and that the diagrams in figure 4 reduce to those in figure 2 for
1→ 0.

The free-energy diagrams in figure 4 now comprise two contributions linear inU ,
corresponding to the self-consistent occupation-number field〈n〉, and the induced anomalous
average (the proximity pairing at the impurity d-orbital site)〈d↓d↑〉. Furthermore, there
now occur three terms quadratic inU . Two of these terms are due to the localized spin
fluctuations (LSF), represented by the spin-susceptibility bubble(GḠ), mutually interacting
at the impurity site and also with the induced localized pairing fluctuations (LPF), shown
as the pairing-susceptibility bubble(FF̄). The third contribution arises from the induced
mutually interacting localized pairing fluctuations.
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Preliminary numerical results [13] indicate the doubling of bound states, in comparison
to the HF theory. In particular, the new bound states tend towardsω = 0 for increasing
U . We shall discuss the full numerical results in detail elsewhere. Our approach can
also be readily extended to other situations of interest, such as an Anderson impurity in
unconventional superconductors [14]. In this case, the self-energy expressions are formally
the same but the order parameter must in general be interpreted as a matrix in spin space.
Also the order parameter1(k̂) for unconventional superconductors possesses less rotational
symmetry than that in the s-wave case. This will naturally lead to ak̂-dependence of the
d-electron Green’s function̂GS(k̂, ω), the matrix self-energŷ6S(k̂, ω) and the bound-state
spectrum below thêk-dependent energy-gap edge.
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